Intel Core i5-3470S
VS
AMD Ryzen 3 2200U

Intel Core i5-3470S vs AMD Ryzen 3 2200U Comparison by technical specs (TDP, performance, memory, compatibility). CPU performance analysis in the benchmark comparison (in the mode of a single core and all the cores).

VS

Which CPU is better for gaming and apps?

A comparative analysis of the technical specifications of Intel Core i5-3470S and AMD Ryzen 3 2200U reveals which model is better suited for gaming and operational apps. We recommend paying attention to the yellow-highlighted specs, as these are the most important factors to consider when choosing a CPU for these purposes.

CPU Cores and Base Frequency

The number of cores and the base frequency are two important factors that affect the CPU's performance. A CPU with more cores can simultaneously execute more tasks, and a CPU with a higher base frequency can execute tasks faster.

2.90 GHz
Frequency
2.50 GHz
4
CPU Cores
2
3.60 GHz
Turbo (1 Core)
3.40 GHz
4
CPU Threads
4
no data
Turbo (2 Cores)
2.50 GHz
No
Hyperthreading
Yes
No
Overclocking
No
No turbo
Turbo (4 Cores)
no data

Internal Graphics

Intel HD Graphics 2500
GPU name
AMD Radeon Vega 3 Graphics
0.65 GHz
GPU frequency
1.10 GHz
1.10 GHz
GPU (Turbo)
No turbo
7
Generation
8
11.0
DirectX Version
12
6
Execution units
3
48
Shader
192
--
Max. Memory
2 GB
3
Max. displays
3
22 nm
Technology
14 nm
Q2/2012
Release date
Q1/2018

Hardware codec support

Decode / Encode
h264
Decode / Encode
Decode
JPEG
Decode / Encode
No
h265 8bit
Decode / Encode
No
h265 10bit
Decode / Encode
No
VP8
Decode / Encode
No
VP9
Decode / Encode
Decode
VC-1
Decode
Decode / Encode
AVC
Decode / Encode

RAM and PCIe

The memory and PCIe specifications of a processor are important factors to consider when choosing a processor for your needs. If you need a processor with high memory capacity and a fast memory clock speed for gaming or other demanding applications, then you should choose a processor with a high-end memory and PCIe configuration.

DDR3-1600
Memory type
DDR4-2400
32 GB
Max. Memory
32 GB
2
Memory channels
2
No
ECC
Yes
3.0
PCIe version
3.0
16
PCIe lanes
8

Encryption

Yes
AES-NI
Yes

Thermal Management

Thermal Design Power (TDP) is a measure of the amount of heat that a processor dissipates when operating. The higher the TDP, the more heat the processor dissipates and the more powerful the cooling system needs to be to prevent it from overheating.

When choosing a processor, it is important to consider the TDP and the type of cooling that is available. Processors with a higher TDP will require more powerful cooling, which may require a more expensive motherboard or case.

TDP measures the heat a processor dissipates. Higher TDP requires more powerful cooling.

65 W
TDP
15 W
--
Tjunction max.
95 °C
--
TDP up
25 W
--
TDP down
12 W

Technical details

6.00 MB
L3-Cache
4.00 MB
22 nm
Technology
14 nm
Ivy Bridge
Architecture
Raven Ridge (Zen+)
VT-x, VT-x EPT, VT-d
Virtualization
AMD-V, SEV
LGA 1155
Socket
FP5
Q2/2012
Release date
Q1/2018
ca. 184 $
Market price

Devices using this processor

Unknown
Used in
Unknown

CPU generation and family

Intel Core i5-3470S vs AMD Ryzen 3 2200U

Which to buy

The benchmark comparison of Intel Core i5-3470S and AMD Ryzen 3 2200U allows defining which CPU is currently better, more modern and efficient. The more points, the better.

Compare Benchmarks

Real world tests of Intel Core i5-3470S vs AMD Ryzen 3 2200U:

Cinebench R20 (Single-Core)

Cinebench R20 is a cross-platform testing tool that measures CPU performance. It is based on the Cinema 4D rendering engine, which is used by professional animators and designers. Cinebench R20 is a reliable and accurate benchmark that can be used to compare the performance of different CPUs. The single-core test in Cinebench R20 measures the performance of a single CPU core. This is a good test for measuring the CPU's raw processing power. The higher the score, the better the CPU's performance. The Cinebench R20 single-core test is a good way to compare the performance of different CPUs. It is a reliable and accurate benchmark that can be used to measure the CPU's raw processing power.

Cinebench R20 (Multi-Core)

Cinebench R20 is a cross-platform testing tool that measures CPU performance. It is based on the Cinema 4D rendering engine, which is used by professional animators and designers. Cinebench R20 is a reliable and accurate benchmark that can be used to compare the performance of different CPUs. The multi-core test in Cinebench R20 measures the performance of all CPU cores. This is a good test for measuring the CPU's ability to handle multiple tasks simultaneously. The higher the score, the better the CPU's performance. The Cinebench R20 multi-core test is a good way to compare the performance of different CPUs. It is a reliable and accurate benchmark that can be used to measure the CPU's ability to handle multiple tasks simultaneously.

Cinebench R15 (Single-Core)

Cinebench R15 is a cross-platform testing tool that measures CPU performance. It is based on the Cinema 4D rendering engine, which is used by professional animators and designers. Cinebench R15 is a reliable and accurate benchmark that can be used to compare the performance of different CPUs. The single-core test in Cinebench R15 measures the performance of a single CPU core. This is a good test for measuring the CPU's raw processing power. The higher the score, the better the CPU's performance. The Cinebench R15 single-core test is a good way to compare the performance of different CPUs. It is a reliable and accurate benchmark that can be used to measure the CPU's raw processing power. Here are some of the factors that can affect the Cinebench R15 single-core score: The CPU's clock speed The CPU's cache size The CPU's architecture The CPU's thermal throttling The Cinebench R15 single-core score is a good way to compare the performance of different CPUs, but it is important to note that it is not the only factor that affects CPU performance. Other factors, such as the CPU's multi-core performance, memory bandwidth, and storage performance, can also affect overall system performance.

Cinebench R15 (Multi-Core)

Cinebench R15 is a multi-core CPU benchmark based on the Cinema 4D rendering engine. It measures the performance of all CPU cores. The higher the score, the better the CPU's performance.

iGPU - FP32 Performance (Single-precision GFLOPS)

FP32 Performance (Single-precision GFLOPS) is a measure of the floating-point performance of an integrated graphics processing unit (iGPU). It is measured in gigaflops (GFLOPs), which is a billion floating-point operations per second. The higher the GFLOPs, the better the iGPU's floating-point performance. Floating-point performance is important for tasks that require a lot of calculations, such as video editing, 3D rendering, and scientific computing.

Geekbench 5, 64bit (Single-Core)

Measures the performance of a single CPU core. Higher score means better performance. Used to compare the performance of different CPUs.

Geekbench 5, 64bit (Multi-Core)

Geekbench 5, 64bit (Multi-Core) is a cross-platform benchmark that measures the multi-core performance of a processor. It uses a set of tasks that require a lot of resources to get an accurate result. Geekbench 5, 64bit (Multi-Core) is a good way to compare the performance of different processors, as well as to learn how changes to settings can affect performance.

Geekbench 3, 64bit (Single-Core)

Geekbench 3, 64bit (Single-Core) is a benchmark that measures the single-core performance of a processor. It is a cross-platform benchmark that is available for Windows, macOS, and Linux. The benchmark uses a set of real-world tasks to measure the performance of the processor, and it reports the results in points. The benchmark can be used to compare the performance of different processors, and it can also be used to learn how changes to settings can affect performance.

Geekbench 3, 64bit (Multi-Core)

Geekbench 3, 64bit (Multi-Core) is a cross-platform benchmark that measures the multi-core performance of a processor. It uses a set of real-world tasks to measure the performance of the processor, and it reports the results in points. The benchmark can be used to compare the performance of different processors, and it can also be used to learn how changes to settings can affect performance.

Estimated results for PassMark CPU Mark

The PassMark CPU Mark is a benchmark that measures the performance of a computer's central processing unit (CPU). The benchmark is based on a variety of tests, including single-threaded performance, multi-threaded performance, and memory performance. The PassMark CPU Mark is a good way to compare the performance of different CPUs, and it can also be used to track the performance of a CPU over time.